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INEQUALITIES CONNECTING GENERALIZED
TRIGONOMETRIC FUNCTIONS WITH THEIR INVERSES

Abstract. Motivated by the recent work [1], in this paper we
study the relations of generalized trigonometric and hyperbolic
functions of two parameters with their inverse functions.
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§ 1. Introduction

In [2] P. Lindqvist studied generalized trigonometric and hyperbolic
functions (p-functions) for a parameter p > 1, and for p = 2 they coincide
with elementary functions. These p-functions were studied extensively,
see for example [2 – 9] and their references. Recently these functions have
been extended to (p, q)-functions with two parameters p, q > 1 in [10 –
13]. These functions coincide with the p-functions for p = q. For the
historical background see the bibliography of these papers. In [14] and
[1] authors have studied the inequalities involving elementary functions
and their inverses. Thereafter in [14] Klén et al. studied those results
in terms of p-functions. Here we generalized those inequalities for (p, q)-
functions and establish double inequality for sinp in terms of elementary
functions, sinp occurs as an eigenfunction of the Dirichlet problem for the
one-dimensional p-Laplacian, see [6].

Before we formulate our main results we define the (p, q)-functions
and some other notation. The increasing homeomorphism function Fp,q :
[0, 1] → [0, πp,q/2] is defined by

arcsinp,q(x) =

x∫

0

(1− tq)−1/p
dt.
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Letting t = z1/q, we have

arcsinp,q(x) =
1
q

xq∫

0

z1/q−1(1− z)
−1/p

dz =
1
q
B̃

(
1
q
, 1− 1

p
, xq

)
,

where B̃(a, b, x) is incomplete beta function defined as

B̃(a, b, x) =

x∫

0

ta−1(1− t)b−1dt.

The inverse of arcsinp,q is denoted by sinp,q, which is defined on the interval
[0, πp,q/2], where

πp,q = 2arcsinp,q(1) =
2
q
B̃

(
1
q
, 1− 1

p
, 1

)
=

2
q
B

(
1
q
, 1− 1

p

)
,

here B(a, b) denote the beta function. We also define

arccosp,q x = arcsinp,q((1− xp)1/q)

(see [11, Prop. 3.1]), and

cosp,q(x) =
d

dx
sinp,q(x), x ∈ [0, πp,q/2].

Letting y = sinp,q(x), we get

cosp,q(x) = (1− (sinp,q(x))q)1/p,

and
| cosp,q(x)|p + | sinp,q(x)|q = 1. (1)

The generalized tangent function tanp,q(x) is defined as

tanp,q(x) =
sinp,q(x)
cosp,q(x)

.

For x ∈ (0,∞), the inverse of generalized hyperbolic sine function
sinhp,q(x) is defined by

arcsinhp,q x =

x∫

0

(1 + tq)−1/pdt,
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and generalized hyperbolic cosine and tangent functions are defined by

coshp,q(x) =
d

dx
sinhp,q(x), tanhp,q(x) =

sinhp,q(x)
coshp,q(x)

, x ≥ 0

respectively. It follows from the definitions, that

| coshp,q(x)|p − | sinhp,q(x)|q = 1, x ≥ 0. (2)

The main results of the this paper reads as below.

Theorem 1. For p, q > 1 the following hold

1) For all x ∈ (0, 1) and y ∈ (0, πp,q/2) with y < arcsinp,q(x) we have

arcsinp,q(x) sinp,q(y) > xy.

2) For all x ∈ (0, πp,q/2) and y ∈ (0, 1) with tanp,q(x) > y we have

tanp,q(x)arctanp,q(y) > xy.

3) For all x, y ∈ (0,∞) with y < sinhp,q(x) we have

sinhp,q(x)arcsinhp,q(y) > xy.

4) For all x ∈ (0, 1) and y ∈ (0,∞) with arctahp,q(x) > y we have

arctahp,q(x)tanhp,q(y) > xy.

Theorem 2. For p, q > 1 the following hold

1)
x

arcsinp,q(x)
>

sinp,q(πp,qx/2)
πp,qx/2

, x ∈ (0, 1),

2)
tanp,q(x)

x
<

bx

arctanp,q(bx)
, x ∈ (0, k), 0 < k <

πp,q

2
,

b = tanp,q(k)/k,

3)
sinhp,q(x)

x
<

x

a arctanp,q(x/a)
, x ∈ (0, k), k > 0, a =

k

sinhp,q(k)
.

4)
x

arctanhp,q(x)
>

tanhp,q(cx)
cx

, x ∈ (0, k), k ∈ (0, 1),

c = k/arctanhp,q(k).
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§ 2. Preliminaries and proofs

The following derivative formulas will be used in our calculations, and
they can be derived easily from the definition.

Lemma 1. For all x ∈ (0, πp,q/2), we have

1)
d

dx
cosp,q(x) = −p

q
(cosp,q(x))2−p(sinp,q(x))q−1 ,

2)
d

dx
tanp,q(x) = 1 +

p

q

(sinp,q(x))q

(cosp,q(x))p
,

and for all x ∈ (0,∞)

3)
d

dx
coshp,q(x) =

q

p
(coshp,q(x))2−p(sinhp,q(x))q−1 ,

4)
d

dx
tanhp,q(x) = 1− q

p

(sinhp,q(x))q

(coshp,q(x))p
.

For the following monotone l’Hospital rule see [15, Theorem 1.25].

Lemma 2. For −∞ < a < b < ∞, let f, g : [a, b] → R be continuous on
[a, b], and be differentiable on (a, b). Let g

′
(x) 6= 0 on (a, b). If f

′
(x)/g

′
(x)

is increasing (decreasing) on (a, b), then so are

f(x)− f(a)
g(x)− g(a)

and
f(x)− f(b)
g(x)− g(b)

.

If f
′
(x)/g

′
(x) is strictly monotone, then the monotonicity in the conclu-

sion is also strict.

For the proof of following lemma see ([1]).

Lemma 3. Let f : I → J be a injective function, where I, J are the
subsets of (0,∞). Suppose that the function g(x) = f(x)/x, x ∈ I is
strictly increasing. Then for any x ∈ I, y ∈ J such that f(x) ≥ y following
holds

f(x)f−1(y) ≥ xy ,

where f−1 : J → I denotes the inverse function of f . Under the same
condition if f(x) ≤ y then we have

f(x)f−1(y) ≤ xy . (3)
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For the following lemma see [16, Theorem 2, p. 151], [13, Theorem 1].

Lemma 4.

1) Let J ⊂ R be an open interval, and f : J → R be a strictly mono-
tonic function. Let f−1 : f(J) → J be the inverse of f . If f is
concave and increasing, then f−1 is convex.

2) For all x ∈ (0, 1), the functions p 7→ arcsinp(x) and p 7→ arctanhp(x)
are strictly decreasing in p ∈ (1,∞).

Lemma 5. For p, q > 1, the following hold

1) the function f(x) =
arcsinp,q(x)

x
is increasing in x ∈ (0, 1),

2) the function g(x) =
tanp,q(x)

x
is increasing in x ∈ (0, πp,q/2),

3) the function h(x) =
sinhp,q(x)

x
is increasing in x ∈ (0,∞),

4) the function j(x) =
arctahp,q(x)

x
is increasing in x ∈ (0,∞) with

p > q.

Proof. Let f(x) =
arcsinp,q(x)

x
=

f1(x)
f2(x)

. Then f ′1(x) = (1− xq)−1/p > 0

and f ′2(x) > 0. Now it is clear by Lemma 2 that f is increasing. For the
proof of part (2) and (3), let

g(x) =
tanp,q(x)

x
=

g1(x)
g2(x)

, h(x) =
sinhp,q(x)

x
=

h1(x)
h2(x)

.

Differentiation gives

g′1(x) = 1 +
p

q

(sinp,q(x))q

(cosp,q(x))p
> 0, and h′1(x) = coshp,q(x) > 0,

and the proof is obvious from Lemma 2. For part (4), we get

d2

dx2
tanhp,q(x) = −q

p

(
q(sinhp,q(x))q−1(coshp,q(x))p+1 − q coshp,q(x)

(sinhp,q(x))2q−1

)
=

= −q

p
(sinhp,q(x))q−1(coshp,q(x))1−2p < 0,
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since tanhp,q(x) is concave, and clearly with p > q it is increasing. By
Lemma 4(1), arctahp,q(x) is convex, and from this fact we get, that

d

dx
arctahp,q(x)

is increasing. Hence the rest of proof follows from Lemma 2. ¤
Proof of Theorem 1. The functions

arcsinp,q(x)
x

,
tanp,q(x)

x

sinhp,q(x)
x

, and
arctahp,q(x)

x

are increasing by Lemma 5. The rest of proof follows immediately from
Lemma 3. ¤

It is easy to check by using the derivative formulas that the following
relations

x < arcsinp,q(x), x ∈ (0, 1),

x < tanp,q(x), x ∈ (0, πp,q/2),

x < sinhp,q(x), x ∈ (0,∞),

x > tanhp,q(x) ⇒ arctanhp,q(x) > x, x ∈ (0, 1).

hold true for all p, q > 1.

By Theorem 1 and above relations we conclude the following corollary.

Corollary. For p, q > 1 the following hold

1)
x

arcsinp,q(x)
<

sinp,q(x)
x

, x ∈ (0, 1),

2)
x

arctanp,q(x)
<

tanp,q(x)
x

, x ∈ (0, 1),

3)
x

arcsinhp,q(x)
<

sinhp,q(x)
x

, x ∈ (0,∞),

4)
x

arctanhp,q(x)
<

tanhp,q(x)
x

, x ∈ (0, 1).
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Proof of Theorem 2. The monotonicity of the functions

arcsinp,q(x)
x

,
tanp,q(x)

x

sinhp,q(x)
x

,
arctahp,q(x)

x

imply, that
f1(x) =

πp,q

2
arcsinp,q(x) < x,

f2(x) =
tanp,q(x)

b
< x,

f3(x) = a sinhp,q(x) < x,

and f4(x) = carctanhp,q(x) < x.

Hence
f−1
1 (x) = sinp,q(πp,qx/2), f−1

2 (x) = arctanp,q(bx),

f−1
3 (x) = arcsinhp,q(x/a), f−1

4 (x) = arctanhp,q(cx),

and the proof follows from (3) if we let y = x. ¤
Corollary. The following assertions hold true:

1)
x

arcsin(x)
<

sinp(x)
x

, for x ∈ (0, 1), p ≥ 2,

2)
sinp(x)

x
<

2x/πp

arcsin(2x/πp)
, for x ∈ (0, π2), p ∈ (1, 2],

3)
x

arctan(x)
<

tanp(x)
x

, forx ∈ (0, 1), p ∈ (1, 2],

4)
tanp(x)

x
<

bx

arctan(bx)
, for x ∈ (0, k), 0 < k < πp/2, b =

tan(k)
k

.

The proof follows from Theorem 1, Lemma 4(2) and Corollary 2.

Remark. In [17, Theorem 2.3], the following inequalities was proved

B̃(a, b, x)B̃(a, b, y) ≤ B̃(a, b, x + y − z)B̃(a, b, z)

for a ∈ (0, 1), b > 0 and x, y > z. Under the same assumption with
0 < x + y − z < 1 and x, y, z ∈ (0, 1) one has

arcsinp,q(x)arcsinp,q(y) ≤ arcsinp,q(x + y − z)arcsinp,q(z).
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